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1. Introduction

Over the years, numerous algorithms have been proposed for

minimizing a nonlinear objective function subject to nonlinear constraints.

Many of these algorithms can be classified as primal approximation

methods. These methods treat the given problem, hereafter referred to

as the primal, by using the current estimate of a primal solution,

possibly together with other information, such as estimates of the Lagrange

multipliers, to form a constrained minimization subprobleni which in some

way approximates the primal. The procedure of solving a sequence of

such approximating subproblems, and perhaps executing other tasks, we

call recursive substitution. For example, with x~ as the current

estimate of a primal solution, we might solve the quadratic subprob].em

obtained by linearizing each constraint and the objective function about

and adding to the objective function the term (x_x~)
t Gj(x_ xi),

where G1 is a positive definite matrix that approximates the Hessian

of the Lagrangian at a Karush-Kuhn-Thcker (K.K.T.) pair [5,6,22,29].

Various non-quadratic subprobleins have also been proposed [13,16,21L,27].

All of the algorithms proposed in these references are pure

recursive substitution schemes, that is, schemes which set x1~1 equal

to a solution of the approximating subproblem generated from x~. Other

methods require additional computation, such as a line search, to

generate xi+i [7,19,20,30]. Furthern~ re, the methods of [13,16,21+,

27,29] are one-point methods, that is, methods that use only information
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at the current point. Methods that use quasi-Newton updates [5,6,22J

are not one-point methods, since the Hessian approximation depends on

previous estimates of a K.K.T. pair.

It is reasonable to expect a recursive substitution scheme

to be effective if each subproblem can be easily solved. Notice that

in general a trade-off is inevitable: the easier a particular type of

subproblem is to solve, the less it tends to resemble the primal, and

consequently the more subprobletns we expect to have to solve. The

primal itself is of course a perfect approximation and presumably is

difficult to solve, while the subproblem formed by linearizing the

constraints and objective function can be easily solved by linear pro-

gramming, but may be a poor approximation, especially if the functions

defining the primal are highly nonlinear. In particular, approximating

a geometric program by a linear program 153 can be disastrous, and

often it is desirable to approximate a geometric program by another

geometric program, whose constraints and objective function will in

general be nonlinear functions 128]. In this case, each approximating

geometric program has the advantage of a smaller degree of difficulty

than the given problem. There is therefore a need to study general

approximating subproblems.

In order for any algorithm to be used with confidence, it is

necessary to determine under what conditions, if any, the algorithm

generates a sequence of estimates that converges to a solution, and,

if convergence can be established, it is important to determine the

rate of convergence. Most algorithms popular today, and in particular
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most pure recursive substitution schemes, exhibit local convergence.

That is, for any starting primal solution estimate x0 In some

neighborhood of a primal stationary point z, the algorithm generates

j a sequence (x 1) that converges to z. A local convergence proof

generally requires strong differentiability assumptions and a good

estimate of a vector of Lagrange multipliers at z. Rate of convergence

results are necessarily local results, and in fact are usually established

in the course of proving local convergence. In [25], local convergence

and rate of convergence results are derived for methods utilizing

arbitrary, possibly non-quadratic, approximating subproblems in a one-

point recursive substitution scheme.

Few researchers have considered the question of global con-

vergence. We will say that a nonlinear programming algorithm is globally

convergent if, for any arbitrary starting primal solution estimate x0,

the algorithm generates a sequence (x1) that converges to a primal

stationary point. A globally convergent algorithm is extremely desirable,

for a locally convergent method might fail miserably if provided with

a poor initial estimate, and a feasible direction method [33] requires

an initial feasible point, which might be unavailable or difficult

to compute.

Recently, a globally convergent algorithm employing quadratic

aubprobleins has been proposed [7]. Under appropriate hypotheses, the

solution of each quadratic subproblem is shown to generate a descent

direction of an exact penalty function e~, where p is a fixed

positive real number. That is, let x~ be the current estimate of

a solution, let z1 solve the quadratic subproblem constructed from

3

It 
___________________________________

ill 
c~~4tfl;n. . r . ...p~~.—. ..r-’~~.—aa--

~~~
- 

~~~~~~~~~~~~ . -~~ —

— ~~~~~ ~~~~~~~~~~~ ..? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—- ,



X i 
and some positive definite matrix, as described above, and let

di - x1. Then Dd e (x 1) < 0, where Ddf(x) denotes the direc-
i

p

j tional derivative of the function f at the point x in the direction d.

The new estimate is then x~÷1 = x1 + cz1d1, where

+ a1d1) 
= mm e~(x1 + ad1) and 0 < ~~ < +

• O<a

We then solve the quadratic subproblem constructed from x~~1 and a

new positive definite matrix, and continue in this fashion. For each

sufficiently large p, this scheme is globally convergent. Moreover,

by using Lagrange multiplier estimates and choosing each G1 properly,

in some neighborhood of a K.K.T. pair (z,u) the line search can be

omitted, and the pure recursive substitution scheme itself generates

a sequence ((x~~v1)) that converges to (z,u) [5, 6,22].
H In this paper we will generalize the results of [7] to prove

global convergence for recursive substitution schemes utilizing

arbitrary, possibly non-quadratic, approximating subproblems. Alternatively,

our results can be viewed as the global version of the results of [25],

without the restriction to one-point schemes. We will restrict our

attention to solving a convex primal with convex subproblems so that

we can employ the full power of convex analysis and thereby determine

the minimum hypotheses needed to guarantee global convergence. In

particular, the functions defining the primal and each subproblem need

not be differentiable. Our results also prove global convergence of

a new algorithm for geometric programming [28].
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This paper is divided Into six sections . In the next two
I sections we examine the connection between constrained optimization

problems and exact penalty functions. In Section 1+ we consider the

directional derivative of the maximum of a finite collection of convex

functions. We present the global convergence theorem in Section 5.

Section 6 is devoted to concluding remarks.

2. Exact Penalty Functions: Part 1

• Our goal is to solve convex program C

H minimize f0(x)

subject to fk (x) < 0, k = 1,2,..

• where, for each k = O,l,...,p, fk :R m —~R is a convex function. The

solution set of C is the set of all points that solve C.

We associate with program C the exact penalty function e ,

defined by

p
= f0 (x) + p 

~ ms~~0,fk (x) )
k=l

where p is a positive real number. The minimum set of is

the set of points that minimize ~~ We call an exact

I 

penalty function because , if the functions are differen-

tiable, then for each sufficiently large p the minimum set
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~~~ ~~~~~~~~~~~ 
< 

~~~ 
max(0,?k (v , ) .

KEK k€K k=l

Therefore,

+ 

k€K ~ k
( 1 ,8)  ~~~ 

~~~~~~ 
+ 

~~ 

k=l

or equivalently, p(v) <

To prove the theorem, it now suffices to show that p(x ) < p ( v ) .

We first show that cp(x0) < p(x B). Since a <0 and p > 
~~~~
, It follows

that p = (~-r-i-€)/a for some nonnegative number € . We have

p(x0) = ~0(x0,) +(~
_r_1_€) 

kEK

~ ~~~~~~ 
+ 

(
~
_r_l_€ )

l<k<p

(since ?k(x°,~) < 0 for k = l,2,...,p)

• (since 0 < a ~~ max Pk(x°,
~
) < 1 and ~ - y - 1 - € < o)

l<k<p

< mm us(s) -l +~ 0(x
0
,~~) -max ?0

(x0,s)
sES s€S

< m m  w(s) _ l<?0
(xB,) = cp(xB),

s€S

that is, cp(x
0) < p(xB) .
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Since p is convex and ~
B 

= tx° + (l-t)v for some t in

(0,1), we have

p(xB) < tp(x0) + (i-t) p(v) < tp(xB) + (i-t) cp(v) ,

or equivalently, p(xB) < cp(v). Since we have shown that p(v)

and since cp(xB) = 
~ 
(~B~~) ~~ follows that ~)(X ,) <

which proves the theorem. 0

COROLLARY 1.1. Suppose that program C is superconsistent and has a

nonempty solution set. Then there is a positive number p
1 such that,

• • whenever p > p1, each minimum of the function 9 is also a solution

of program C.

Proof. The result ~ollows from Theorem 1 by deleting all references

to the variable s and the set S and replacing each 
~k

(x,s) with

f.(x) for k = O,l,...,p. Notice that the result holds even if the

solution set of C is unbounded. (This corollary appears in [31].) 0

3. Exact Penalty Functions: Part 2.

To prove the converse of Theorem 1, we will require several

results from convex analysis [26]. Let f be a convex function. The
*vector x is said to be a ~~ gradient of f at the point x if

*f(y) > f(x) + (x ,y-x) for every y. The set of all subgradients of

_ _ _ _ _  .~~~~~~~~~~~~~~~~ _ _ _ _ _ _
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f at x is called the subdifferential of f at x, and is denoted

by ~f(x). For each x, ~f(x) is a nonempty and compact convex set

(Theorem 23.1~, [26]). Moreover, I is differentiable at x if and

only if ~f(x) = (Vf(x)). Clearly, ~f(Cøc) = a ~f(x) for each x

and each positive number a.

LEMMA 3. Let f1, f2, ... , f~ be convex functions and let

= 
~ i. 

+ + + 
~~ 

Then for each x we have

.~~f(x) = ~f1(x) 
+ ~f2(x) + ... + ~f (x)

• P.~~of. See Theorem 23.8, Rockafellar [26]. 0

• We say that the function f:Rm —~~ R U (+ co )  Is proper if f

Is convex and if f(x) < +oo for at least one x. If f:Rm -÷ R U (+~)

is a convex function, we define the closure of I to be that function

whose epigraph is the closure in R~~
1 of the epigraph of I. It

follows that a proper convex function is closed if and only if it is

lower semicontinuous.

Let f:Rm —* R U [+a~ be a convex function. The conjugate

function I is defined on Rm by f*(x) = supt (x*,x) - f(x) ~~
X€  R’~

’).

*The conjugate I is a closed convex function, proper if and only if

I is proper. If I is a closed pr:p:r convex function, then the

conjugate of f 

* 

is f, that is, (f ) = I. Therefore, the conjugacy

operation f -~~ I induces a one-to-one symmetric correspondence in
*

the class of all closed proper convex functions on R . Since f

13
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may not be finite valued, the subdlfferential ~f(x ) may be empty

*for some x . However, if I is a closed proper convex function,

• then x € ~f(x ) if and only if x € ~f(x) .

If X is a convex set In Rm, the indicator function of X,

denoted by ~( Jx), is defined on Rm by

lo  If’ x € X

5(xlX) = 1
+ 

~~~ otherwIse.

There is an obvious one-to-one correspondence between a convex set

and its indicator function, namely, ~(xIX 1) = ~(xIX 2) for every x

if and only if X1 = X2. The conjugate transform of 
~~

(•  ~X) is called

the support function of X. We have 5*(x*IX) = sup((x*,x) - 

~(xIX) I x€R
tm)

= supf (x*,x)Jx € X). If X is also closed, then 5(.iX) and 5 (.ix)

are conjugate to each other (Theorem 13.2 , [26)). Ther:fore, if X1
and are closed convex sets, we have ~ (x 1X 1) = ~ (x 1X2) for

every x~ if and only if X1 = X2.

Let f be a (finite valued) convex function. It can be shown

(Theorem 23.LL, [26]) that, for each x and d and each sequence

[cxi) CR with 0 < aj~1 < a ~ and lim
1 cxi = 0,

f(x + a d) - 1(x)
u r n

ai

exists and is finite. We call this limit the directional derivat ive

- —__- ~~~~~ • • • • _ .• - _
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of I in the direction d at the point x, and denote it by

Ddf(x). Moreover,for each fixed x and d,

g(a) f(x + c) - 1(x)

is nondecreasing on (a € Rtcr > 0); also, for each a > 0 we have

Dadf(x) = t
~~d
f(x). We say that the direction d Is a descent direction

of f at the point x if Ddf(x)  < 0 , in which case the continuity

of I implies f(x + ad) < f(x) for all sufficiently small positive a.

LEMMA ii. Let I be a convex function. Then for each x and d

we have Ddf(x) = mnax((x*,d)Ix* € ~f(x)).

Proof. See Theorem 23.4, Rockafellar [26J . 0

• Although a stronger version of our next theorem appears in

[23], our result has a particularly simple proof and is adequate

for our purposes.

THEOREM 2. Let I be a convex function and let g = max(0,f).

Then ~g(x) is nonempty for every x and

i) ~g(x) = (0) if 1(x) < 0

ii) ~g(x) D (crx
*lO < a < 1 and x~€ ~f’(x)) if f(x) = 0

iii) ~g(x) = ~f(x) if 1(x) > 0.

15
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Proof. It follows from the above remarks that ~g(x) is noneinpty,
closed, convex, and bounded for all x.

I) Suppose 1(x) < 0. Then for each z in some neighborhood of

• x we have g(z) = 0. Therefore, for each d we have

0 = D~g(x) = max( (x*,d)Ix* € ~g(x))

It follows that ~g(x) = (0), which proves i).

4 ii) Suppose f(x) = 0. Choose x in af(x). Then

f(y) ?f(x) + (x*,y_x) = (x*, y-x)

for each y. If (x*,y_x) > 0, then f(y) > 0, so that

g(y) = 1(y) > r(x) + (x*,y_x) >g(x) + (a,c*,y_x)

for each a in [0,1]; hence E 
~g(x). On the other

hand, if (x , y-x) <0, then

g(y) = ~~x(0,f(y)) > ~~~(O,(x*,y_x)) = 0

= mnax(O, (ax*,y_x ) > g(x) + (~~*,y_x > for each cx> 0.

Hence cnc* € ~g(x) whenever a € [O,i], which proves ii).

iii) Suppose f(x) > 0. Then for each z in some neIghborhood of x

we have g(z) = f(z). Therefore, for each d we have

Ddf(x) = D~~(x). It follows from Lemma 4 and the above remarks

that ~g(x) = ~f(x), which proves iii). 0
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• A remarkable feature of convex programming is the existence

of necessary and sufficient conditions for optimality, even in the

absence of differentiability. Consider again convex program C:

minimize f0(x)

subject to fk(x) < 0, k = 1,2,..., p.

If C is actually an unconstrained minimization problem, we call the

solution set the minimum set.

LEMMA 5. Let I be a convex function. Then the minimum set of I

is 1 (0); In particular, the infimum of f is attained if and only

j f ~f (0) is nonempty.

Proof. See Theorem 27.1, Rockafellar (26]. 0

We say that a vector u in R~ is a vector of Lagrange multipliers

for C if u >0 and if the infimum of the function fø +u~fi
+.~

. +u f

is finite and equal to the optimal objective function value of C. We

define the Lagrangian function L on Rm x R~ by

f f0(x) + v
1f1(x) 

+ . . . +  v f ( x )  if v >0

L (x ,v) = j
[ - otherwise.

The pair (z,u) Is said to be a saddlepoint of L (with respect to

maximizing in v and minimizing in x) if for every x and v we

have L(z,v) < L(z,u) < L(x,u).

17

__\ ‘I~~~ L~~~ . . ...



_  - ,~--- -• -- _ _ -  - • •-_ •

•

— 1 -

LEMMA 6. The point z solves C and u is a vector of Lagrange

multIpliers for C If and only if (z,u) is a saddlepoint of’ the

Lagrangian L. This condition holds If and only if the following

Karush-Kuhn-Tucker (K.K.T.) conditions hold:

I) Uk >0 and fk(z) < 0, k = l,2,...,p

ii) U
k
f (z) = 0, k = l,2,...,p

iii) 0 E ~f0(z) 
+ u.~ ~f1(x) +~~~~~ + u ~f (z).

(If i), II), Iii) hold, we call (z,u) a K.K.T. pair.) Moreover,

if C is superconsistent, then z solves C if and only if there is a

• vector u such that (z,u) is a saddlepoint of the Lagrangian L

(or equivalently, if (z,u) is a K.K.T. pair), and the set of

Lagrange multipliers is identical to the set of points maximizing

(over all v) the function mm m L(x,v).x€R

Proof. See Theorems 28.2 and 28.3 and Corollaries 28.3.1 and 28.14.1,

J Rockafellar [26]. 0

We now prove the main result of’ this section, the converse

of Theorem 1.

THEOREM 3. Under the hypotheses of Theorem 1, there is a nonnegative

number p 2 such that, whenever p ? 
~2 

and s E S, each solution of

program a(s) is also a minimum of the function

18 
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Proof. By Lemma 1, for each s in S the set of Lagrange multipliers

U(s) is noneinpty and closed at s, and uniformly bounded near s.

Therefore, by Lemma 2, for some nonnegative number we have

p
2 

= rnax5€5( f l u llu  € U ( s ) ) .

We claim that is the desired constant. To see this,

choose s in S and P> 
~~ 

Let ~ be a solution of c(s) and

let u belong to U (
~~
). Let

• K = ( k€ ( l ,2 , . . . , p ) I f
k

(Z , S) <0) ,

K0 
= (k€(1 ,2,...,p)lr

k
(
~
,s) = 0)

and
= (k€{l,2,...,p) I~k

(z,s) >0)

Then K.,. is empty and U
K 

= 0 for each k in K_ , by Lemma 6. Hence, by

Lemma 6 again, we have

0 € ~f0 ) + u~ k ’ ~~~ 
= 
~~~~~~ 

+ 

~ 
‘1k ~~k~~,8)

k=]. k€K0

c ~~~~~~ 
+ p ~ (c~ x I 0  < c~< 1 and x,~ €

c ) (~~ )

where the final assertion follows from Theorem 2 and uemma L5. There-

fore, 0 € ~~~~~~~~~~ 
which implies that € ~~~~~ By Lemma 5,

~ is a minimum of ~~~~~~~ 
which proves the theorem. 0
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COROLLARY 3.1. Under the hypotheses of Theorem 1, there is a positive

number such that, whenever p > and s € S, the solution set

of i(s) and the minimum set of ~~
(. s) coincide.

Proof. In light of Theorems 1 and 3, it suff ices to choose

~15 
= 

~~~~~~~~~~~~~~ 
0

COROLLARY 3.2. Suppose that program C is superconsistent and has a

nonempty and bounded solution set . Then there is a posit ive number

p
3 

such that, whenever p > p3, the solution set of C and the minimum

set of coincide.

Proof. Half of this corollary follows directly from Corollary 1.1. The

other set containment follows from Theorem 3 by deleting all references

to the variable s and the set S, and replacing each ~k(x,s) with

fk(x) for k = O,l,...,p. 0

14. Direct ional Derivat ives

We next consider the directional derivative of the maximum of

a finite collection of convex functions.

LEMMA 7. Let f:Rm —~R be a convex function. Then for each x and

each € > 0 there is a ~ > 0 such that ~f (y )  C ~f(x)  + €B whenever

y E x + §B, where B = ( z € Rm JI J Z II < 1), the unit ball in Rm.

20 
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Proof. See Corollary 214 .5.1, Rockafellar [26]. 0

LEMMA 8. Let f:Rm —~R be a convex function. Then the point-to-set

map ~f is closed and uniformly bounded on Rm.

Proof. Since ~f(x) is bounded for each x, it follows immediately

from Lemma 7 that ~f is uniformly bounded on Rm.

To show that ~f is closed, let x1 — ‘x, let x~ E

and let x1 —~x . Then for every y we have f(y) > f(x~) + (x~,y_ x~ )

for every i. Since I is continuous, it follows that

1(y) > f(x) + (x*,y_x). Therefore, x C ~f(x).

LEMMA 9. Let (~~
) be an infinite sequence of real numbers such that

for every I. Suppose some subsequence E~ J
) converges

to some number ~~~. Then the entire sequence (~~) converges to ~~~.

Proof. Choose € >0. Since lint . ~~~~. = ~~, for some N we have
3-4~~~~~ 3 1

~~~ ~~~~~~~~~~~~ Hence,
1

lim sup 
~~~~~~~~~~~~~~~ 

.

i_ , 00 1

On the other hand, we must have ~ <~~~~~~~~ for every i, which implies

that ~ < lint luff1 ~~~~~
. Thus for any € > 0 we have

~~< lim inf~~1
< 1im sup~~1 <~~~+ € ,

i— 4 00 i— 4 00

which proves the result. 0
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• The proof of’ the following principal result of this section is

fashioned after [2].

THEOREM 4. Let K be a finite set, and let the functions

(f(’,k)~k E K) be convex on Rm . Let g be defined on Rm by4
g(x) = max(f(x,k)Ik € K), and let 1(x) = (k C Klf(x,k) = g(x)).
Then for each x and d the directional derivative D~g(x) is finite,
and D~~(x) = Inax[Ddf(x,k)Ik € 1(x)).

Proof. Choose x and d. Since g is convex, the directional

derivative D~g(x) exists and Is finite. Since D~~~(x) = cxD~g(x)

whenever a > 0, it suffices to prove the result for the case

= 1. Let x1 = x + aid, where 0 < a1÷1 < cr1 and lim
1 a~ = 0,

and O d il = 1. Then for each i we have (x1-x)/( JIx~-xJi ) = d (since

IIdII = 1, we can interpret the components of d as direction cosines).

Choose k. in 1(x.) and choose k in 1(x).

For each I we have

• g(x~) - g(x)

a1

= 

f(x1,k1) - f (x .,k) 
+ f~ 1~k)

f(x~, k) — f(x,k)

a (since k1 E 1(x 1))
I

*

> 
(x , x1 -x)

— 

a for every x in ~f(x,k)I
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Since (x~-x)/cz~ d for every 1, we have

- g(x) 
* *

> (x ,d) for every x in f(x,k),

or equivalently,

g(x 1) - g(x) 
* *

a > sup[(x ,d)~x S ~f(x,k)) = Dd f(x,k)i

Since this holds for each i and each k in 1(x), it follows that

g(x )  - g(x)
D~g(x) lIm 

a > max(Ddf(x,k)lk C 1(x))

To prove the reverse inequality, we first observe that, since

K is finite, for some subsequence x
3 

(where 
~ 

—b ÷ co) and some

in K we have k0 € I(x~). Since f(,k) and g are continuous

functions for each k, it follows that

g(x) lint g(x.) = lint f(x.,k°) = f(x,k°)
• j~~~~~co j _ ~~co ~

Therefore, Ic° € 1(x). For each j , we have,

0 0g(x.) - g(x) P(x.,ic ) - f(x,k ) (x ., x -x 
*

a. = 
a ~ a~ 

(x~,d)
3 j  3

for every x~ in ~f(x.,k°). That is,

g(x )-g(x) 
* * 0— 

a. ~ ~~~~~~~~~~~ ~ ~f(x~~k U = Ddf(xj~
k )

a

23
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Since ~f(~,k
0) is closed at x and uniformly bounded near x, it

follows from Lemma 2 that (for fixed d) the directional derivative

Ddf(x,
k°) is upper semicont inuous at x. Therefore, by Lemma 9,

we have

g(x~) - g(x)D~g(x) = lim a
1-,oo i

g(x.) - g(x)
= lint a < u r n  sup Ddf(x~~

k )
j  j~~~co

< D~f(x,k°) < max(Ddf(x,k) 1k € 1(x)),

where the final inequality follows as k° € 1(x). Thus we have shown

that

rnax(Ddf(x,k)Ik E 1(x)) <D~~(x) < max[Ddf(x,k)Ik € 1(x))

which proves the theorem. 0

5. The Global Convergence Theorem

In Sections 2 and 3, we considered the f amily ( C ( s ) I s  C 5)

of constrained minimization problems, where the perturbation space S

is a compact subset of RZ1. Suppose now that, for each s, C(s) is

easily constructed from C, C (s) resembles C, and i(s) is easier

to solve than C. We may then regard C(s) as an approximating sub-

problem, and expect that its solution helps us to solve C. Indeed,

we will show that, under appropriate hypotheses, solving C (s )

generates a descent direction of 9~,, the exact penalty function for

the primal C.
24
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In primal approximation methods, the perturbation s always

supplies an estimate of a primal solution, and may also supply other

information, such as an approximation of the Hessian of the Lagrangian.

Accordingly, we will write S = Y x W, where Y C Ent and W C

for some q > 0. If s € 5, we will write s = (y,w), where y € Y

and y E W . By q = O  we mean W Ø ,  in which case we disregard W

and w, so that (y, w ) € Y ~< W will mean y C Y. For each k=O ,l,... ,p

we will write 
~k
(x,y,w), instead of 

~k
(x,s). We will also write

C(s) as C(y,w):

minimize ?0(x,y,w)

subject to ?~(x,y,w) < 0 , k = l,2,...,p

In constructing C(y,w), we will always set y equal to the current

estimate of a primal solution, while w may be any arbitrary element

of the compact, possibly empty, set W.

For instance, we can generate quadratic subproblems as follows

[fl.  Suppose the functions 
~~k’ 

defining C are continuously differ-

entiable. Let a and b be positive numbers, and let be the

collection of symmetric m x rn matrices satisfying

2 2afix il < (x,Gx) < b lix for every x

Let xj  be the current estimate of a primal solution and let G~ €

be the current approximation of the Hessian of the Lagrangian. We

form the quadratic subproblem Qi’(x1,G1) by defining

25
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~0
(x,xi,Gi) = f0 (x~ ) + (Vf0 (x~ ), x_x i ) + 

~~~ 
(x_x j ,Gi (x_x j ) )

and

fk(x,xi,GI) = fk (x i) + (Vf k (xi ), x_x i ) , k = l,2,...,p

Returning to the general case, the following theorem shows the

crucial role of each approximating subprob].em C(y, w) .  If

Rm x Rm x ~ R, we denote by ~~~ ,y, w) the subdifferential

map with respect to the first argument, so that ~1~ (x ,y, w) C Rnt .

THEOREM 5. Suppose program C is superconsistent. Let

~~~~~ 
... , ? be functions jointly continuous on R’5 x R~

1 
x

such that for each fixed y, w, and k = O,l,. . . ,p the function

is convex and ~1~~(Y,y,w) = ~f~(y), and such that for each
x, y, w and k = l,2,...,p we have ~~(x,y,w) 

~ 
fk(x) and

= f’~(y). Let Y be a nonempty and compact subset of

and let W be a compact subset of such that program C(y,w)

has the unique solution z(y, w) whenever (y, w) C Y x W. Let
d (y, w) = z(y, w) - y. Then there is a positive number 03 

such that

D~ (y y)ep (~ ) < 0 whenever p > p3, (y,w) 5 Y x W, and d(y,w) / 0.

Proof . We claim that the value = max (~1,~ 2 ) specified in Corollary
3.1, with S = Y x W, is a satisfactory choice. To see this, choose
(i, ) in Y x W and p > p3. Let ~ = z(~,”), the unique solutions

of 
~~~~~~~~~~ 

By Corollary 3.1, ~ is also the unique minimum of

26
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the exact penalty function for 
~~~~~~~ If 

~ /~~ , then

< 
~~~~~~~~~~~~~~~~~~~~ It follows that for each y~ in

we have

0 > )(Z,Y, W) - 
~~~~~~~ 

> ~~~~ = (y* d)

where d = 
~-3. 

Hence, by Lemma 14, we have

ntax((y ,d)~y ~~~~~~~~~~ <0

:~ Since 
~~~~~~~~~ ~~~~~ 

for k = O,l,...,p and 
~~~~~~~

for k = l,2,...,p, it follows from Lemmas 3 and 14 and Theorem 14 that

Dde(3~
) = Dd~pCY,~

,) < 0, which proves the theorem. 0

The heart of our convergence theorem is the following slight

generalization of Zangwill’s convergence theorem [32).

LEMMA 10. Let Y be a nonempty and compact subset of Rnt and let

W be a compact subset of Let r:y x W — Y  x W be a point-to-set

map. Suppose an algorithm generates the sequence ((Xi,Wj)) according H

to the recursion (xj+i,wi+i ) C r(x1~w~)~ where (x0,w0) is given.

Suppose that

1) there is a continuous function 9:Y —
~ R such that

1) if x minimizes 9, then the algorithm stops at x

ii) if x does not minimize 0, then whenever (y,u) € r(x,w)

we have 9(y) < 9(x)

2) r is closed on Y x W.

Then either the algorithm stops at some point (z,w) such

that z minimizes 0, or some s’Absequence converges to some (z,w)

such that z minimizes 9.

27

I — _________________ ~~~~~~~~~~~~ _______ _______________________ — 
. 

~~~~ - - - --—--=~~~~~ ._—.—-- — - —.-.._—_ .-_ _==-=-—~~~~~ :- __________________

• -.~---.,•- -~~~. ~~~~~~.—-—•• .•— -~~~~ ---— *- -,- -~~.—- .-~- -



--

Proof. The proof does not differ significantly front that in 132],

and will be omitted. 0

Though Zangwill’s result guarantees only subsequential con-

vergence, the following lemma provides a sufficient condition for

the entire sequence (x 1) to converge.

LEMMA 11. Let f be a convex function with the unique minimum z.

If the sequence (x 1) satisfies lint
1 

f(x~) = f(z ) ,  then

lint. x =z .
1 — ~co j

Proof. See Corollary 27.2.2, Rockafellar [26]. 0

LEMMA 12. Let M.~:X —~Y and M2:Y —~Z be point-to-set maps.

Let the composition map M2M,~:X 
—~~ Z be defined by

M2M1
(x ) = J(M2(y)~y C M1

(x ) )

Suppose that M1 is closed at x and M2 is closed on M~(x). If

Y is compact, then M2M,1 is closed at x.

Proof. See Corollary 4.2.1, Zangwill [32]. 0

LEMMA 13. Let f:Em -* R be a continuous function and let the point-

to-set map M:Rnt x Rnt 
~ Em be defined by

M(x,d) = (y !f ( y )  = mm f (x  + ad)) ,
o<cr<~

where ~ is a fixed positive number. Then M is closed on

m m
B X E .
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Proof. See Lemma 5.1, Zangwill [32]. 0

LEMMA 114. Let f1, f2, . . .  , f~, be convex functions such that

• (xj fk(x) < 0, k 1,2,...,p) is nonetnpty and bounded. Then for

each real number a the level set Xa = (x~~~....1 1~~~0,fk(x)) <a)

- - 
- is compact if it is nonempty.

Proof. See Lemma 3 1 4, Han [7] .

We now define the algorithm. Let the positive numbers p

and ~~~, the nonempty and compact set T C Rm, and the compact set

W C be given. Choose any (x0,w0) in T x W. Consider the

following idealized algorithm.

Algorithm d: For 1 = 0,1,2,...

1) solve ~(x1,w1) to obtain a solution z.; let d. = z~ - x1

2) find an a1 such that e~ (x1 
+ aid.) = min(e~ (x.+ad1)IO<a<~~);

let x1~1 = x. 
+ a1d1

3) stop if x1.~.1 xi; otherwise, return to 1) with x~~1 replacing

and any w1~1 
in W replacing w1.

We may now prove the global convergence theorem.
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THEOREM 6. Suppose that program C is superconsistent, that its

objective function f0 is bounded below, that its fea. ible region

(xlfk(x) < 0, k l,2,...,p) is bounded, and that it has the

unique solution z. Let 
~~~~

, ?~, ... , be functions jointly

continuous on Rnt x Em x such that for each fixed y, w, and

k = O,l,...,p the function ~~~~~~~ is convex and

~l~k (y,y , w) = ~f~(y), and such that for each x, y, w, and

k = l,2,...,p we have ~~(x,y,w) < f~(x) and ~~(y,y,w) =

Suppose that program C(y,w) has a unique solution whenever

(y,w) C R~
’ x W. Then there is a positive number p0 such that,

whenever p > p0, algorithm d either stops at the unique solution z

• or lint. x. = z.1—~co 1

Proof. By Corollary 3.2, there is a positive number p
3 such that

z is also the unique minimum of 9~ whenever p > p
3. Let f

~ 
be

bounded below on Rm by -cr, and let

p p
Y = [xl 

~~~ 
max(0,fk(x)) < max [ -i- (f0(x) + a-) + E max(0,fk(x))J).k=l xCT ~

‘3 k=l

Clearly, we have T CY. Also, since 
~ 
max (O,fk(z)) = 0, we have

z € Y. By Lemma 14, Y is compact.

Let S = Y X W if W / 0, and let S = Y if W = 0. Applying

Corollary 3.3. to the compact set 3, we conclude that there is a

positive number p
3 

such that the minimum set of Z~(~~s) and the

J 
solution set of i(s) coincide whenever p > and s S S. By

hypothesis, this common set is the singleton (z(s)). Let

p
0 

= max(1, p3, ~3). We viii. show that p
0 is the desired constant.
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• Choose (x0,w0) in T x W, choose ~ ~ 
and let

Y0 = (x~0~ (x) < 9
0
(x0)). Notice that z C Y0, since P > p3. We will

• show inductively that, if Algorithm a generates the sequence ((Xi,W i ))

(possibly a finite sequence), then (x i) C Y0 
fl Y. It is clearly

true for x0. Suppose x~ € Y0 
fly for j  = l,2,...,i, and let

= z(xi,wj) .

Suppose first that z~ = x1. Then d1 = 0, x~÷1 = x1, and

the algorithm stops. On the other hand, suppose that z1 / x~.
By Theorem 5, d~ z~ - x~ is a descent direction for 0 at

x1. Therefore, the line search must generate an x.÷1 such that

e~ (x
1~1) < 9~,(x~). From the induction hypothesis, we have

0(x1) < O~ (x0). Hence, 0
~
(x
~÷1
) < e~(x.) < e~(x0), that is,

€ Y0. It follows that

k=1 
max(O,fk(xi+l))

~ (9~(x~) - f
0(x

~÷1
)) = 

~~~ (f~(x0) - f0(x 1÷1)) + 

k=1 
max(0,fk(xO

))

-< ~~~ (f0(x0) + + 
k=l 

max(0,fk(xO
))

< ~~~~
- (f0(x0) + + 

k=l 
max(0,f’k(xO

))

(since 10(x0) + a- > 0 and p > max(l,p3
))

< tnax[-~ - (f~(x) + a) + max(0,fk(x ) J  (since x0 C T) .

x T  3 k=l
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I Therefore, x
~ ÷~~

€ Y
~~

f l Y

• Let the map D:S ~4R
nt 

X R~ be defined by D(s) = ( (x ,z(s)-x)),

where s = (x,w), and let the map L:Rm ~ Em —
~ S be defined by

L(x,d) = ((x+ad ,w)I9~(x
-4- ad) = mm o~ (x + ad) and wE W).

O<cr<~

Lastly, let the composition map r:s — S be defined by I’ = LD.

Clearly, if s~ -S 5, then algorithm a generates the point s~~1

only if s~~1 C r(s~
).

• We will verify that the hypotheses of ZangwIll’s Convergence

Theorem are satisfied for the point-to-set map r and the continuous

function 9~. Actually, we have already shown that P: S —
~ S and

that S is compact.

Suppose that, for some 1, the point x~ minimizes 9.

Since p > p~, it follows by Corollary 3.2 that x1 also solves C.
By Lemma 6, there is a vector u of Lagrange multipliers such that

(x1,u) is a K.K.T. pair for C. Since 
~k

(x i,x.,wl) =

for k = l,2,...,p and ~l
fk(Xl,xI,w.) 

= 
~
fk(xI) for k = O,l,...,p,

it follows that (x
~
,u) is also a K.K.T. pair for ~(x1,w1)

for any w1 in W. Therefore x~ = z~, the unique solution of

~
(xi,wi). Hence di = - X

i 
= 0, and the algorithm stops.

On the other hand, suppose that x1 does not minimize 9~.

Reasoning as above, it follows that x1 does not solve C, and

hence X
i 

does not solve 
~

(x
~,wi) for any vi in W. Therefore,

the unique solution z1 of C(xi,wi) must satisfy Z
i / x~.

Since we assumed that an exact line search is executed over a nonempty

interval, it follows from Theorem 5 that 9~ (x) < e p(xi) whenever

(x,w) E r(x1,w1).
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Let ~2:S -~~ Em be defined by c~(s) = (z(s)). Then Q is

closed on S and uniformly bounded near 3, by Lemma 1. Therefore,

by Lemma 2, for some finite number b we have sup(JIz(s)lI IsES ) < b.

Let B = fy S Rnt
I IJy ll < b). Then, for each s = (x,w) in 5, the

pair (s,z(s)-x) is contained in the compact set S x (B-Y).

Therefore, by Lemmas 1, 12, and 13, the map r is closed on S.

Thus the hypotheses of Lemma 10 are satisfied; we conclude that

either the algorithm stops at z or some subsequence [X
j
) converges

to z. Since the entire sequence [e
~
(xi)) is monotone decreasing,

by Lemma 9 we have

u r n  0~(x1) = lint e~(x .) = e~(z) = f0(z)
i — * oo

It follows from Lemma 11 that lint x. = z, which proves the
j - ~~-co ].

theorem. 0

6. Concluding Remarks

It is clear from the proof of Theorem 6 that p0 depends

on T and W but not on ~~~ . Although the theorem holds for each

positive number ~~~, in practice ~ should be chosen suitably large

in the hopes of insuring that the line search terminates because

the minimum is reached, and not because the upper bound ~ is

encountered. Such a choice could only speed the overall convergence.

The requirement that f0 be bounded below can always be met

by replacing f0 with exp(f0), which is bounded below by zero.

If C has a unique solution, then C will also have a unique solution

when exp(f0) replaces f0.
33



If C has the unique solution z, then in theory we can

always Insure that the feasible region is bounded by imposing the

single additional constraint (x,x) < c, where c > (z,z). In

practice, a very large value of c should be used. Alternatively,

we could bound the feasible region with linear constraints.

The most restrictive hypothesis is the requirement that each

~(y,w) possess a unique solution. For quadratic subproblems, this

is accomplished by using a positive definite matrix. Notice that

global convergence is assured even if one fixed positive definite

matrix is used for each quadratic subproblem. However, the local

properties of the algorithm will then suffer.

To study the local behavior of a recursive substitution scheme,

it is usual to make strong assumptions, including the requirement that

each and be twice differentiable, and that a good estimate

of a Karush-Kuhn-Tucker pair (z,u) be available. Under such con-

ditions, analysis of a recursive substitution scheme utilizing quadratic

subproblems [5,6,22], or arbitrary approximat ing subproblenis in a one-

point scheme [25], has shown that near (z,u) the line search can be

omitted, and the resulting pure recursive substitution scheme generates

a sequence ((x1,v1)) that converges to (z,u). Moreover, a linear,

superlinear, or quadratic convergence rate is possible, depending on

second order conditions. Notice that the multiplier estimates vj

play a crucial role in the local analysis, yet are not explicitly

considered in our global convergence theorem.
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We hope that our global convergence result, motivated by the

need to validate an algorithm for geometric programming [28], will

inspire additional work in non-quadratic subproblems. In addition, the

results in Sections 2 and 3 suggest a way to solve convex programs with

nondifferentiable constraints. Namely, minimize the exact penalty

function associated with the program, using any available algorithm

for minimizing a nondifferentiable convex function [1,12].
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SOL 79-1 by Eric Rosenberg
• GLOBALLY CONVERGENT ALGORITHMS FOR CONVEX PROGRA~tIING

- 

We consider solving a (minimi zation) convex program by sequentially solvi ng
• a (minimi zation) convex approximating subproblem and then executing a line

search. Each subprobl em is constructed from the current estimate of a solu-
tion of the given problem, possibly together with other information. Under
mild conditions , solving the current subproblem generates a descent di rection
for an exact penalty function . Minimizing the exact penalty function along

- 
the current descent direction provides a new estimate of a solution , and a
new subproblem is formed. For any arbitrary starting estimate, this scheme
generates a sequence of estimates that converges to a solution of the given
problem. Moreover, it is not necessary to require that the functions defining

• the given problem and each subprobl em be differentiable.
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